Bar Alon - בר אלון
Can Alice and Bob Guarantee Output to Carol?
2024
Bar Alon, Eran Omri, and Muthuramakrishnan Venkitasubramaniam
EUROCRYPT 2024
In the setting of solitary output computations, only a single designated party learns the output of some function applied to the private inputs of all participating parties with the guarantee that nothing beyond the output is revealed. The setting of solitary output functionalities is a special case of secure multiparty computation, which allows a set of mutually distrusting parties to compute some function of their private inputs. The computation should guarantee some security properties, such as correctness, privacy, fairness, and output delivery. Full security captures all these properties together.
Solitary output computation is a common setting that has become increasingly important, as it is relevant to many real-world scenarios, such as federated learning and set disjointness. In the set-disjointness problem, a set of parties with private datasets wish to convey to another party whether they have a common input. In this work, we investigate the limits of achieving set-disjointness which already has numerous applications and whose feasibility (under non-trivial conditions) was left open in the work of Halevi et al. (TCC 2019).
Towards resolving this, we completely characterize the set of Boolean functions that can be computed in the three-party setting in the face of a malicious adversary that corrupts up to two of the parties. As a corollary, we characterize the family of set-disjointness functions that can be computed in this setting, providing somewhat surprising results regarding this family and resolving the open question posed by Halevi et al.
MPC for Tech Giants (GMPC): Enabling Gulliver and the Lilliputians to Cooperate Amicably
2024
Bar Alon, Moni Naor, Eran Omri, and Uri Stemmer
CRYPTO 2024
In the current digital world, large organizations (sometimes referred to as tech giants) provide service to extremely large numbers of users. The service provider is often interested in computing various data analyses over the private data of its users, which in turn have their incentives to cooperate, but do not necessarily trust the service provider.
In this work, we introduce the Gulliver multi-party computation model (GMPC) to realistically capture the above scenario. The GMPC model considers a single highly powerful party, called the server or Gulliver, that is connected to n users over a star topology network (alternatively formulated as a full network, where the server can block any message). The users are significantly less powerful than the server, and, in particular, should have both computation and communication complexities that are polylogarithmic in n. Protocols in the GMPC model should be secure against malicious adversaries that may corrupt a subset of the users and/or the server.
Designing protocols in the GMPC model is a delicate task, since users can only hold information about polylog(n) other users (and, in particular, can only communicate with polylog(n) other users). In addition, the server can block any message between any pair of honest parties. Thus, reaching an agreement becomes a challenging task. Nevertheless, we design generic protocols in the GMPC model, assuming that at most α<1/6 fraction of the users may be corrupted (in addition to the server). Our main contribution is a variant of Feige’s committee election protocol [FOCS 1999] that is secure in the GMPC model. Given this tool we show:
1. Assuming fully homomorphic encryption (FHE), any computationally efficient function with O(n · polylog(n))-size output can be securely computed in the GMPC model.
2. Any function that can be computed by a circuit of O(polylog(n)) depth, O(n · polylog(n)) size, and bounded fan-in and fan-out can be securely computed in the GMPC model without assuming FHE.
3. In particular, sorting can be securely computed in the GMPC model without assuming FHE. This has important applications for the shuffle model of differential privacy, and resolves an open question of Bell et al. [CCS 2020].
Three Party Secure Computation with Friends and Foes
2023
Bar Alon, Amos Beimel, and Eran Omri
TCC 2023
In secure multiparty computation (MPC), the goal is to allow a set of mutually distrustful parties to compute some function of their private inputs in a way that preserves security properties, even in the face of adversarial behavior by some of the parties. However, classical security definitions do not pose any privacy restrictions on the view of honest parties. Thus, if an attacker adversarially leaks private information to \emph{honest} parties, it does not count as a violation of privacy. This is arguably undesirable, and in real-life scenarios, it is hard to imagine that possible users would agree to have their private information revealed, even if only to other honest parties.
To address this issue, Alon et al.~[CRYPTO 20] introduced the notion of security with friends and foes (FaF security). In essence, (t,h)-FaF security requires that a malicious adversary corrupting up to t parties cannot help a coalition of h semi-honest parties to learn anything beyond what they can learn from their inputs and outputs (combined with the input and outputs of the malicious parties). They further showed that (t,h)-FaF security with n parties is achievable for any functionality if 2t+h<n, and for some functionality, (t,h)-FaF security is impossible assuming 2t+h≥n. A remaining important open problem is to characterize the set of n-party functionalities that can be computed with (t,h)-FaF security assuming 2t+h≥n.
In this paper, we focus on the special, yet already challenging, case of (1,1)-FaF security for three-party, 2-ary (two inputs), symmetric (all parties output the same value) functionalities. We provide several positive results, a lower bound on the round complexity, and an impossibility result. In particular, we prove the following.
1. We identify a large class of three-party Boolean symmetric 2-ary functionalities that can be computed with (1,1)-FaF full security.
2. We identify a large class of three-party (possibly non-Boolean) symmetric 2-ary functionalities, for which no O(log κ)-round protocol computes them with (1,1)-FaF full security. This matches the round complexity of our positive results for various interesting functionalities, such as equality of strings.
On Secure Computation of Solitary Output Functionalities With and Without Broadcast
2023
Bar Alon and Eran Omri
TCC 2023
Solitary output secure computation models scenarios, where a single entity wishes to compute a function over an input that is distributed among several mutually distrusting parties. The computation should guarantee some security properties, such as correctness, privacy, and guaranteed output delivery. Full security captures all these properties together. This setting is becoming very important, as it is relevant to many real-world scenarios, such as service providers wishing to learn some statistics on the private data of their users.
In this paper, we study full security for solitary output three-party functionalities in the point-to-point model (without broadcast) assuming at most a single party is corrupted. We give a characterization of the set of three-party Boolean functionalities and functionalities with up to three possible outputs (over a polynomial-size domain) that are computable with full security in the point-to-point model against a single corrupted party. We also characterize the set of three-party functionalities (over a polynomial-size domain) where the output receiving party has no input. Using this characterization, we identify the set of parameters that allow certain functionalities related to private set intersection to be securely computable in this model.
Our main technical contribution is a reinterpretation of the hexagon argument due to Fischer et al. [Distributed Computing ’86]. While the original argument relies on the agreement property (i.e., all parties output the same value) to construct an attack, we extend the argument to the solitary output setting, where there is no agreement. Furthermore, using our techniques, we were also able to advance our understanding of the set of solitary output three-party functionalities that can be computed with full security, assuming broadcast but where two parties may be corrupted. Specifically, we extend the set of such functionalities that were known to be computable, due to Halevi et al. [TCC ’19].
On Perfectly Secure Two-Party Computation for Symmetric Functionalities with Correlated Randomness
2022
Bar Alon, Olga Nissenbaum, Eran Omri, Anat Paskin-Cherniavsky, and Arpita Patra
TCC 2022
A multiparty computation protocol is perfectly secure for some function f if it perfectly emulates an ideal computation of f. Thus, perfect security is the strongest and most desirable notion of security, as it guarantees security in the face of any adversary and eliminates the dependency on any security parameter. Ben-Or et al. [STOC '88] and Chaum et al. [STOC '88] showed that any function can be computed with perfect security if strictly less than one-third of the parties can be corrupted. For two-party sender-receiver functionalities (where only one party receives an output), Ishai et al. [TCC '13] showed that any function can be computed with perfect security in the correlated randomness model. Unfortunately, they also showed that perfect security cannot be achieved in general for two-party functions that give outputs to both parties (even in the correlated randomness model).
We study the feasibility of obtaining perfect security for deterministic symmetric two-party functionalities (i.e., where both parties obtain the same output) in the face of malicious adversaries. We explore both the plain model as well as the correlated randomness model. We provide positive results in the plain model, and negative results in the correlated randomness model. As a corollary, we obtain the following results.
1. We provide a characterization of symmetric functionalities with (up to) four possible outputs that can be computed with perfect security. The characterization is further refined when restricted to three possible outputs and to Boolean functions. All characterizations are the same for both the plain model and the correlated randomness model.
2. We show that if a functionality contains an embedded XOR or an embedded AND, then it cannot be computed with perfect security (even in the correlated randomness model).